524Uploads
222k+Views
120k+Downloads
Design, engineering and technology
Paper chain fun
Consider colour sequences and measurements while making paper chains for Christmas
Paper chains are super easy to make and a great way to decorate a room or Christmas Tree. In this Christmas STEM activity, students are going to try to make the longest chain possible with three pieces of paper. Students will consider the different sequences that are all around them, whilst thinking about colour patterns and number sequences.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Make Rudolph shaped cookies in class
In this fun Christmas STEM baking activity, students will make Rudolph cookies, with his famous red nose. Combing maths and science, this activity will teach students precision measuring, different imperial measurements, chemical changes and more.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Air traffic control communications
In this activity learners will make use of the theme of the future of flight to learn about the importance of clear communication for air traffic controllers.
They will work together in groups to follow instructions to make a range of shapes using different cards.
You will need:
Scissors (to cut out shape cards).
Shape cards.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Sew your own Christmas stocking
In this fun Christmas craft project for secondary school students, learners will design and sew their own Christmas stocking.
Our free resource is designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology and Engineering.
The free activity sheet and instruction presentation are available to download below.
Oh ho ho, and please do share your final creations with us @IETeducation! #SantaLovesSTEM
Make a homemade paper cone Christmas tree
Get kids thinking about 2-dimensional and 3-dimensional shapes, as well as faces, edges and vertices.
In this easy activity we are going to make paper cone Christmas trees which are fun to decorate and make a great centrepiece for any Christmas table.
Download the STEM activity sheet below for free, And if you’re up for an extra activity, try our wordsearch where you look for words used in the experiment to increase sticky learning.
Please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Engineering products
Look at the difference between smart and engineered materials
Our lesson plan on engineering products offers a focus on how materials have been specifically engineered to provide the necessary qualities and characteristics.
Learners will enjoy the challenge of investigating the differences between these two types of materials, understanding their properties, uses, and the process of their creation. It gives an opportunity for students to explore a range of engineered and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve their objectives.
This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT).
Activity: Investigating the difference between smart and engineered materials
In this activity, students will work in pairs to research a specific engineered material. They are tasked with creating a fact sheet or PowerPoint presentation that includes the following information about their chosen material: its chemical, physical and mechanical properties, what it looks like visually and at a molecular level, what it was designed to do, how it is made, what it is made from, what it is used for, and whether it has evolved from its original intended function.
These projects can be used as a wall display or be presented to the rest of the class, promoting an interactive and collaborative learning environment.
The engineering context
Smart and engineered materials form the foundation of many products and structures that we use daily. By understanding how they are made, what they are used for, and how they can be manipulated, children can gain a deeper understanding of key engineering principles.
Suggested learning outcomes
By the end of this activity, students will have a comprehensive understanding of how materials can be designed and made for specific characteristics and purposes. They will be able to identify the properties of materials required for a specific function and explore a range of engineered materials, understanding why and how they have been developed.
This activity will also enhance their research, presentation, and teamwork skills, making it a well-rounded educational experience.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our step-by-step classroom lesson plan instructions as well as a handout worksheet.
Please do share your highlights with us @IETeducation.
Engineers can read your mind
Explore the different technologies that engineers have developed to scan the brain
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
This activity encourages students to think about new technologies and how difficult it is to predict their future development and application. The handout ‘Reading minds’ is an introduction on how the engineering field of biomedical signal processing is helping doctors understand the brain and treat patients.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
The ‘Mind Scanner’ challenge is an extension activity that allows students to do a bit of future gazing. The challenge looks at how future compact mind scanner technology could be used and by whom - considering both ethical and economic issues.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Remote Operations Challenge
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way.
The context of the challenge
Engineering has always been of great importance to the health industry. Machines, equipment, techniques and procedures are developing at a great pace and rely on engineering research and development.
The field of bioengineering – the application of engineering principles to address challenges in the fields of biology and medicine, is advancing rapidly. As medical knowledge, techniques and expertise get more sophisticated, the needs to perform remote operations, to levels of minute accuracy, are becoming more and more necessary and common.
The Remote Operations challenge is based on the IET Faraday® Challenge Day of the same name from our 2010/11 IET Faraday® Challenge Day season.
Students work in teams to design and make a prototype device that can simulate a heart and kidney transplant, but must be operated remotely. Objects representing the human heart (tennis ball) and a kidney (ping-pong ball) must be picked up and accurately placed in their appropriate holes in an MDF/cardboard cutout of a human torso.
Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
**What’s included? **
The complete set of downloadable materials includes:
Teachers pack
A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day … plus printable Faradays currency and student certificates.
Student booklet
Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school.
Introductory PowerPoint presentation
A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. Film clips
Informative clips about remote medicine and robotic surgery, plus examples of possible solutions to the challenge.
To view the additional related videos, please visit the IET Education website.
Mission to Mars - DIY challenge day
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way.
The context of the challenge
Humans have been exploring the Earth for many years, travelling abroad for holidays, organising explorations to the top of mountains, to the poles of the Earth and to the bottom of oceans.
What happens when this spirit of expedition is turned to the skies?
Activity info and teachers’ notes
The Mission to Mars challenge is based on the IET Faraday® Challenge Day of the same name from our 2013/14 IET Faraday® Challenge Day season.
Students are the engineer specialists recruited by ‘Make it 2 Mars’ to establish a human settlement on the planet Mars by 2023. Students will design and construct a rocket which will transport supplies via Earth orbit to the astronauts on Mars, as well as building a system to transport their rocket to the launch site for testing.
Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
What’s included?
The complete set of downloadable materials includes:
Teachers pack
A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates.
Student booklet
Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school.
Introductory PowerPoint presentation
A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips.
Download the free activity sheet below!
All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs.
If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail.
And please do share your classroom learning highlights with us @IETeducation
Emergency Communications Challenge
IET Faraday® DIY Challenge Day
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way.
The context of the challenge
Ease of communication is part of our life, we pick up the phone, turn on the radio, TV or internet to get news and information. Wifi networks work by radio signals. Your phone, TV and radio signals are transmitted by masts we hardly notice. But when all of these are knocked out by natural events how do we communicate?
Students are the engineer rescue team based in the town of Alpha which has been relatively unaffected by the extreme weather. As the engineer rescue team in town Alpha, students will design and build a prototype device that will need to send coded messages to town Beta, and create a code to send a message from Alpha across the mountains for decoding in Beta. There is little time to lose, with a (simulated) helicopter arriving in a matter of hours to transport half of the rescue team to town Beta to set up the system for testing.
Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
What’s included?
The complete set of downloadable materials includes:
Teachers pack
A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day… plus printable Faradays currency and student certificates.
Student booklet
Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school.
Introductory PowerPoint presentation
A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips.
**Remember, it’s all free! **
All online resources (including film clips!) are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs.
If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail.
And please do share your classroom learning highlights with us @IETeducation
IET Faraday® DIY Challenge Day - IHEEM (Institute of Healthcare Engineering and Estate Management)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths together in an engaging way.
The IHEEM challenge is based on the IET Faraday® Challenge of the same name from our 2021/22 season of IET Faraday® Challenge Days.
Students are given an engineering brief (found in the student booklet) to help IHEEM to design a prototype which could be used in a children’s hospital to make a stay in hospital more comfortable and relaxing for young patients and their families, carers and friends. They will need to demonstrate that they have the engineering skills required to engineer and construct a working prototype of their design and pitch their products to the judges.
Designed for six teams of six students (36 students in total) aged 12-13 years (year 8 England, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills.
This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
What’s included?
The complete set of downloadable materials includes:
Teachers’ pack
A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates.
Student booklet
Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school.
PowerPoint presentation
A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation.
Film clip
Full briefing video introducing the challenge to your students.
All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do remember to share your activity highlights with us @IETeducation
James Webb Space Telescope - DIY Faraday Challenge Day
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths together in an engaging way.
The James Webb Space Telescope challenge is based on the Faraday Challenge of the same name from our 2018/19 season of Faraday Challenge Days.
Students are given an engineering brief from Tim Peake (found in the student booklet) where he invites the students to assist the engineering mission of the James Webb Space Telescope team. They will need to demonstrate that they have the engineering skills required to engineer and construct a working prototype of their design and pitch their products to the judges.
Designed for six teams of six students (36 students in total) aged 12-13 years (year 8 England, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills.
This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
Can your students help make a difference as a Faraday James Webb Space Telescope engineer?
DIY IET Faraday® Challenge - Lighthouse keeper transfer
This Primary IET Faraday® DIY Challenge Challenge Day encourages students to consider how engineers work together to solve real-life problems. It enables students to experience the knowledge, understandings and skills engineers use within their work and the ways in which their strengths can be used to achieve an effective outcome.
The students will need to work as a team to design a way of getting lighthouse keepers back to the mainland from a lighthouse based on a small island 200 metres from the nearest land. The design will need to use a zip line to carry the keeper safely across the waves which can be high during storms.
The students will have access to the Faraday shop and a budget of Faraday money. They will need to plan what resources to buy and manage and record their budget. At times they may need to make decisions about affordability and effective use and should be encouraged to identify alternative, possibly cheaper, approaches to their final designs.
At the end of the challenge day students will be asked to present their prototypes by demonstrating how their design could carry the lighthouse keeper safely to the mainland.
Designed for six teams of six students (36 students in total) aged 8-11 years, the challenge encourages the development of students’ problem solving, team working and communication skills.
This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
The complete set of free downloadable materials includes:
Teachers’ pack
A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates.
Student booklet
Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school.
PowerPoint presentation
A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation.
And please do share your classroom learning highlights with us @IETeducation
Four experiments with magnets
Super simple fun science experiments
These four fun science experiments using magnets are quick and easy to set up, suitable for learning at home or school. Your students will measure the effects of magnetism as magnets pass through tubes made of different materials; create a visual demonstration of Chaos theory with magnets affecting the swing of a pendulum; feel “attract” and “repel” forces of magnetism by placing magnets on either side of their hand, and use the magnetic field to make an object move as if it is alive.
These four practical experiments demonstrate various different scientific principles related to magnets and magnetism, including:
electromagnetic induction
magnetic fields
chaos theory.
Tools/resources required
Projector/Whiteboard
Magnet kit
2 neodymium magnets
plastic radiator pipe sleeves
copper plumbing pipe
Sticky tape
Blu-tack
Steel nut
Cotton thread
Chairs
This activity could be used as a starter or main activity to introduce the effects of magnetism and magnetic fields, or as one of several activities within a wider scheme of learning focusing on different types of forces. These experiments could also be used as an introduction to power generation or the potential uses of magnets in Design and Technology and Engineering projects.
This activity sheet was developed with the support and participation of the School of Engineering at Cardiff University.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Programmable systems - How much do you know about programmable systems?
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
It is very important that food is prepared or cooked to the correct temperature. Too cold and it could cause food poisoning, too hot and it could burn. A temperature probe can be used to check that the temperature of food is at the right level.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a food temperature probe that will warn people when their food is too cold.
Activity info, teachers’ notes and curriculum links
In this activity, learners will recall and extend their understanding of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Develop a programmable counter
Investigate a decade counter circuit and compare it to a programmable counter
This resource is part of a collection that supports using the BBC micro:bit for Design and Technology lessons.
In this activity, students will investigate a decade counter circuit. They will then compare the operation of this to their programmable counter.
Learners may need to recap basic circuit symbols and the use of circuit diagrams before attempting this activity.
If students have not used circuit simulation software previously, they may benefit from a teacher demonstration of this. Any circuit simulation software that is available in school and that supports decade counters can be used. Popular examples are Circuit Wizard and Yenka.
The teacher may need to check the circuits drawn by learners prior to them testing the circuits, to ensure that they have been correctly drawn, and therefore the test results are accurate.
If learners encounter switch bounce they could investigate the issue further and look at ways to reduce it.
This is an ideal exercise for learners to develop their technical knowledge related to the use of decade counters in electronics and compare their operation to similar programmable systems.
This is a quick and simple activity that will take approximately 20 minutes to complete.
Tools/resources required
Projector/Whiteboard
Exercise books or folders
Circuit simulation software (e.g. Circuit Wizard, Yenka etc.)
What is the BBC micro:bit?
The BBC micro:bit is a small, programmable computer that was designed for education purposes. It was developed by the BBC in partnership with several technology companies, including Microsoft and ARM. The micro:bit features an LED display, buttons, sensors, and Bluetooth connectivity, making it a versatile tool for teaching programming, electronics and other STEM subjects. It is popular in schools around the world and has been used to create a wide range of projects, from simple games to complex robotics. The micro:bit is also affordable and accessible, with many free resources and tutorials available online for students and teachers to use.
Suggested learning outcomes
By the end of this activity students will be able to simulate and test the operation of a decade counter circuit and they will be able to compare and contrast hardware based electronic counters with programmable counters.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Learning more about programmable systems
Students discuss what they do and don’t know about programmable systems
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error.
In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz.
Activity info, teachers’ notes and curriculum links
In this activity, learners will self-assess and plan how to extend their current knowledge of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design a prototype score counter
Use the BBC micro:bit programmable system to create a working prototype of a score counter
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error.
In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz.
Activity info, teachers’ notes and curriculum links
In this activity, learners will integrate a BBC micro:bit based programmable system into a working product prototype.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Navigating a maze - Create a set of clear instructions to navigate a maze path
Create a set of clear instructions to navigate a maze path
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Programmable robotic systems are becoming an important part of industrial developments in Design and Technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly.
In this unit of learning, learners will use the BBC micro:bit to develop a robotic buggy that can successfully navigate a maze or path.
Activity info, teachers’ notes and curriculum links
In this activity, learners will create a set of clear instructions to help their partner navigate a maze path.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Programming the robot buggy with the BBC micro:bit
Work as a team to program the robot buggy so that it can navigate a maze path
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Programmable robotic systems are becoming an important part of industrial developments in Design and Technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly.
In this unit of learning, learners will use the BBC micro:bit to develop a robotic buggy that can successfully navigate a maze or path.
Activity info, teachers’ notes and curriculum links
In this activity, learners will work as a team to program the robot buggy so that it can navigate a maze path.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation